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Auxiliary Differential Equation Formulation:
An Efficient Implementation of the
Perfectly Matched Layer

Omar Ramadan, Member, |EEE

Abstract—An efficient algorithm for implementing the perfectly
matched layer (PML) is presented for truncating finite-difference
time-domain domains. Thealgorithm isbased on incor poratingthe
auxiliary differential equation method intothe PML formulations.
Simple, unsplit-field and material independent PML formulations
areobtained. Two dimensional numerical examplesareincluded to
validate the proposed formulations.

Index Terms—Auxiliary differential equation (ADE), finite-dif-
ference time-domain (FDTD), perfectly matched layer (PML).

I. INTRODUCTION

HE PERFECTLY matched layer (PML), introduced

by Berenger [1], has been widely used for truncating
finite-difference time-domain (FDTD) domains. However,
Berenger’'s PML is based on splitting each of the field com-
ponents of Maxwell’s equations into two subcomponents
and it is only applies, as originally proposed, for truncating
nonconductive media. For conductive media, alternative PML
formulations based on the stretched coordinate approach have
been introduced [2]. But, the FDTD implementation of these
formulations necessitate similar splitting of the field compo-
nents. Recently, unsplit field implementation of the stretched
coordinate PML formulations has been introduced [3]. This
method, which is named as convolutiona PML (CPML), is
based on applying the convolution theorem into the stretched
coordinate PML formulations [3].

Inthisletter, aternative and simple unsplit-field implementa-
tions of the stretched coordinates PML formulations are intro-
duced without the need of computing the convolution termsin-
troduced in [3]. These formulations are based on incorporating
the auxiliary differential equation (ADE) method into the PML
implementations. For truncating general media, it is shown that
thismethod, asin the case of the CPML, requirestwo additional
auxiliary variables per field component per cell in the PML re-
gion. In addition, the presented formulations are implemented
using the magnetic field H and the electric displacement field
D instead of the electric field E [4]. Thisalowsthe PML to be
independent of the material of the FDTD computational domain
[4]. Two dimensional numerical tests have been carried out to
validate the proposed method.
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Il. FORMULATION

Using the stretched coordinate formulations [2], the fre-
quency domain modified Maxwell’s curl equations in the PML
region can be written as

V,xH=juD )
Vs x E=—jwuH 2

where the operator V; is expressed as
Vs = .5, 10z + a,S, ' 0y + 4.5 10z ©)

where 3z, dy, and 3z are the space derivatives with respect to
xz,yand z and S, (n = z, y, z), are called the stretched coor-
dinate variables. To achieve good el ectromagnetic wave absorp-
tion, S, (n = =, y, z), are chosen within the PML region [2]
as

Sy =1+oy/jwe,, (=2, 9, 2) 4
where o, isthe conductivity profile along the 7-direction in the
PML region.

In the above formulations, the electric field components are
computed from the relation D = ¢,¢,.(w)E where £,.(w) is
the complex relative permittivity of the FDTD computational
domain. This approach has the advantage of making the PML
to be independent of the material of the FDTD computational
domain [4].

To descretize (1) and (2), consider, as an example, the
D_-field component of (1)

jwD, =S, 0xH, — S, OyH,. (5)

Using the partia fraction expansion, Sn—l(n =
written as

z,y) can be

Syt =gw/(w +on/e)) = 1= (0g/e0)/(jw + oy /e5). (6)
Substituting (6) into (5), we obtain
JwD. =0xHy — f.o — OyHo + [oy (7)
where the auxiliary variables f., and f., are given by

fza: :(O—x/eo)axHy/(jw +O'3;/€0) (8)
foy =(0y/€0)OyH, [(jw + 0y /e0)- ©
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Equations (8) and (9) can be written as
+(02/€0) fea = (0 /e,)0xH,
(O—y/EO) 2y (O'y/EO)aUH

Transforming (7) into the time domain using the Fourier trans-
formrelation jw — Jt, where 9t isthe derivative with respect
to time, we obtain

(10)
(11)

I e

jwfzy

MDD, = dxHy — fon — OyHy + fuy (12)

where the auxiliary variables f., and f., are given by the
following first order differential equations obtained by trans-
forming (10) and (11) into the time domain

atfza: + (O—a:/go)fza:
Otfy + (UJ/EO)fzJ

It isinteresting to note that by equating these auxiliary variables
to zero, (12) will bereduced to the standard Yee' sFDTD formu-
lations. Following Yee's FDTD agorithm for discretizing the
space and the time derivativesin (12) [2], the following FDTD
expression to calculate the D, field can be obtained

=(oy/e,)0xH,
(0y/e0)OyH.

(13)
(14)

n+1

Zi, g k+1/2

_ nn n+1/2 n+1/2

- D’Zi,j,k+l/2 + At (Hyz+l/2 7, k+1/2 —1/2,3, k+1/2)/A’T

n—l—l n
— At (f J k+1/2 + 2T;, 5 k+1/2>/2
n—l—l 2 n—l—l 2
- At ( / 377 i /1/2 k+1/2)/Ay

Ti,j+1/2, k+1/2
4Jz » k+1/2)/2

where At is the time step, Ax and Ay are the space cell size

in the z and y directions, respectively, and f7%t

2T, G, k+1/2
I ! are obtained by using the standard Yee's FDTD

algorlthm for descretizing (13) and (14) as

(ff;z—lj k1/z ““” 2 "“/2)/At
+ 02(3) (fnﬂa virs Tl k+1/2>/2€0
= 0,(4) (H';L:i//jj,kﬂ/z N ;—1—15223 "*1/2)/A$50
(ffj:lj kt1/z gyivivkﬂ/z)/At
+0y( ) (ffy—i—lj k+1/2 “97 ER Hl/z)/zso
= oy(J) (Haz—,kjf/z,kﬂ/z n+al/12/2 Hl/Q)/AyEO'

Equations (16) and (17) can be rearranged as

+ At (f"+1

2Yi, 4, k+1/2

(15)

(16)

(17)

n—+1 _ N\
f"”z Grok+1/2 gZWI(L)fZWi,j,kﬂ/z

+ 9o (i) (T2

Yit1/2,5, k+1/2

_ gt )

Yi—1/2,5,k4+1/2

(18)

fny—flj k+1/2 =Gy, (J )fgyf,jﬂk“/z
- n+1/2 il
n ey (J) (HQ;MJ-+/1/2J'+‘/2 - Hw;,jfl/Q,A'+1/2)
(19)
where
. Ato, (1) J e
wl) =20, = 1D
Gea2(i) = 14+ OéT(L) 7
‘ Atoy(j) ' s
ay(])I#a gzy1(]):1+Ty(j)
- Yy
and
Gzy2(J) = 14 ay(y)

Similar expressions can be obtained for the other field compo-
nents.

It should be pointed out that the additional auxiliary variables,
introduced in the above formulations, are zero outside the PML
regions, therefore, they only need to be stored within the PML
regions. In addition, (15) can beused for calculatingthe D.. field
inside the FDTD domain by equating the additional auxiliary
variables to zero.

Also, it should be mentioned that when the PML is used to
truncate three dimensional FDTD domains, the application of
the new formulations in the corner PML regions require only
two additional auxiliary variables per field component per cell.
In the face and the edge PML regions, simpler expressions can
be obtained. As an example, for a wave propagating along the
z-direction, the stretched coordinate variables in the x-face
PML region are S, = 1+ o,/jwe,, Sy, = S, = 1 [1].
Hence, the D, field component is calculated from (15) with
frrt = 0. Inthiscase, f"+1 isthe only additional

Y, 5, k+1/2

term o be stored.

Jk+1/2

I11. NUMERICAL STUDY

To validate the proposed method, numerical tests have been
carried out in two dimensional FDTD domain for the TM case.
The computational domain is chosen to be isotropic, homoge-
neous and with the size of 100 Az x 50 Ay cellswhere Ax =
Ay = 1.5 cmisthespacecell sizeinthex and y directions. The
computational domain is excited by a point source at its center.
The excitation used is similar to the derivative of the pulse used
in[5]. Thispulse was preferred asit has low numerical grid dis-
persion [6]. The time step used in the simulationis At = 25 ps
and the reference FDTD solution, having no reflection errors
form the domain boundaries, is calculated using a much larger
computational domain (400 Az x 400 Ay).

The performance of the presented ADE-PML formulations
was first investigated for lossless FDTD computational domain
with the parameters e, = p,, = 1 and ¢ = 0.0. The computa-
tional domain wasterminated by eight layer PML with different
parameters: PML [8, 2,0.01%], PML [8, 2,0.001%], PML [8, 3,
0.01%], and PML [8, 3, 0.001%], as defined in Berenger’s no-
tation [1]. Figs. 1 and 2 show the local and the global errors, as
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Fig.1. Local error for the PML/computational domain interface along theline
(x, —25 Ay) as observed at time 100 At obtained using the ADE-PML for
lossless FDTD domain (¢, = . = 1 and o = 0.0) and different PML

parameters.
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Fig. 2. Global error in the computational domain obtained using the
ADE-PML for lossless FDTD domain (¢, = . = 1 and e = 0.0) and
different PML parameters.

defined in[5], for these numerical tests. Thelocal error was cal-
culated for the PML/computational domain interface along the
line(z, —25 Ay) asobserved at time 100 At. It can be observed
that the presented ADE-PML formulations give good absorbing
performance for all test cases. Also, it can be seen that PML [8,
3, 0.001%)] gives the best results in these tests.

The performance of the ADE-PML was aso compared with
the CPML formulationsfor lossless(e,. = . = 1,ando = 0.0)
and lossy (e, = p,. = 1, and ¢ = 0.01) FDTD domains. The
FDTD domainisterminated by eight layer PML with the param-
eters PMLI8, 3, 0.001%]. Figs. 3 and 4 show the loca and the
global errors for both cases. Two sets of results are presented:
one for CPML and one for the ADE-PML. It can be observed
from Figs. 3 and 4 that the ADE-PML gives better results com-
pared with the CPML for the given PML parameters.

IV. CONCLUSION

A new agorithm based on the ADE method is presented
for implementing the stretched coordinate PML formulations
without the need of splitting the field components in the time
domain. Simple and material independent PML formulations
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Fig. 3. Local error for the PML/computational domain interface along theline

(x, —25Ay) asobserved at time 100 A¢ for PML[8, 3, 0.001%] obtained using

the CPML and the ADE-PML for lossless (¢, = ¢ = 1 and ¢ = 0.0) and

lossy (¢, = pt. = 1 and o = 0.01) FDTD domains.
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Fig. 4. Globa error in the computational domain for PML[8, 3, 0.001%]
obtained using the CPML and the ADE-PML for lossless (¢,- = p- = 1 and
o =0.0)andlossy (¢, = i = 1 and o = 0.01) FDTD domains.

are obtained. Similar to the CPML and for truncating genera
media, the presented ADE-PML formulations require two
additional auxiliary variables per field component in the PML
region. Good absorbing performance has been observed for
both lossless and lossy FDTD domains.
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