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Auxiliary Differential Equation Formulation:
An Efficient Implementation of the

Perfectly Matched Layer
Omar Ramadan, Member, IEEE

Abstract—An efficient algorithm for implementing the perfectly
matched layer (PML) is presented for truncating finite-difference
time-domain domains. The algorithm is based on incorporating the
auxiliary differential equation method into the PML formulations.
Simple, unsplit-field and material independent PML formulations
are obtained. Two dimensional numerical examples are included to
validate the proposed formulations.

Index Terms—Auxiliary differential equation (ADE), finite-dif-
ference time-domain (FDTD), perfectly matched layer (PML).

I. INTRODUCTION

THE PERFECTLY matched layer (PML), introduced
by Berenger [1], has been widely used for truncating

finite-difference time-domain (FDTD) domains. However,
Berenger’s PML is based on splitting each of the field com-
ponents of Maxwell’s equations into two subcomponents
and it is only applies, as originally proposed, for truncating
nonconductive media. For conductive media, alternative PML
formulations based on the stretched coordinate approach have
been introduced [2]. But, the FDTD implementation of these
formulations necessitate similar splitting of the field compo-
nents. Recently, unsplit field implementation of the stretched
coordinate PML formulations has been introduced [3]. This
method, which is named as convolutional PML (CPML), is
based on applying the convolution theorem into the stretched
coordinate PML formulations [3].

In this letter, alternative and simple unsplit-field implementa-
tions of the stretched coordinates PML formulations are intro-
duced without the need of computing the convolution terms in-
troduced in [3]. These formulations are based on incorporating
the auxiliary differential equation (ADE) method into the PML
implementations. For truncating general media, it is shown that
this method, as in the case of the CPML, requires two additional
auxiliary variables per field component per cell in the PML re-
gion. In addition, the presented formulations are implemented
using the magnetic field and the electric displacement field

instead of the electric field [4]. This allows the PML to be
independent of the material of the FDTD computational domain
[4]. Two dimensional numerical tests have been carried out to
validate the proposed method.
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II. FORMULATION

Using the stretched coordinate formulations [2], the fre-
quency domain modified Maxwell’s curl equations in the PML
region can be written as

(1)

(2)

where the operator is expressed as

(3)

where , , and are the space derivatives with respect to
, and and , , are called the stretched coor-

dinate variables. To achieve good electromagnetic wave absorp-
tion, , , are chosen within the PML region [2]
as

(4)

where is the conductivity profile along the -direction in the
PML region.

In the above formulations, the electric field components are
computed from the relation where is
the complex relative permittivity of the FDTD computational
domain. This approach has the advantage of making the PML
to be independent of the material of the FDTD computational
domain [4].

To descretize (1) and (2), consider, as an example, the
-field component of (1)

(5)

Using the partial fraction expansion, can be
written as

(6)

Substituting (6) into (5), we obtain

(7)

where the auxiliary variables and are given by

(8)

(9)
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Equations (8) and (9) can be written as

(10)

(11)

Transforming (7) into the time domain using the Fourier trans-
form relation , where is the derivative with respect
to time, we obtain

(12)

where the auxiliary variables and are given by the
following first order differential equations obtained by trans-
forming (10) and (11) into the time domain

(13)

(14)

It is interesting to note that by equating these auxiliary variables
to zero, (12) will be reduced to the standard Yee’s FDTD formu-
lations. Following Yee’s FDTD algorithm for discretizing the
space and the time derivatives in (12) [2], the following FDTD
expression to calculate the field can be obtained

(15)

where is the time step, and are the space cell size
in the and directions, respectively, and and

are obtained by using the standard Yee’s FDTD
algorithm for descretizing (13) and (14) as

(16)

(17)

Equations (16) and (17) can be rearranged as

(18)

(19)

where

and

Similar expressions can be obtained for the other field compo-
nents.

It should be pointed out that the additional auxiliary variables,
introduced in the above formulations, are zero outside the PML
regions; therefore, they only need to be stored within the PML
regions. In addition, (15) can be used for calculating the field
inside the FDTD domain by equating the additional auxiliary
variables to zero.

Also, it should be mentioned that when the PML is used to
truncate three dimensional FDTD domains, the application of
the new formulations in the corner PML regions require only
two additional auxiliary variables per field component per cell.
In the face and the edge PML regions, simpler expressions can
be obtained. As an example, for a wave propagating along the

-direction, the stretched coordinate variables in the -face
PML region are , [1].
Hence, the field component is calculated from (15) with

. In this case, is the only additional
term to be stored.

III. NUMERICAL STUDY

To validate the proposed method, numerical tests have been
carried out in two dimensional FDTD domain for the TM case.
The computational domain is chosen to be isotropic, homoge-
neous and with the size of cells where

cm is the space cell size in the and directions. The
computational domain is excited by a point source at its center.
The excitation used is similar to the derivative of the pulse used
in [5]. This pulse was preferred as it has low numerical grid dis-
persion [6]. The time step used in the simulation is ps
and the reference FDTD solution, having no reflection errors
form the domain boundaries, is calculated using a much larger
computational domain ( ).

The performance of the presented ADE–PML formulations
was first investigated for lossless FDTD computational domain
with the parameters and . The computa-
tional domain was terminated by eight layer PML with different
parameters: PML [8, 2, 0.01%], PML [8, 2, 0.001%], PML [8, 3,
0.01%], and PML [8, 3, 0.001%], as defined in Berenger’s no-
tation [1]. Figs. 1 and 2 show the local and the global errors, as
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Fig. 1. Local error for the PML/computational domain interface along the line
(x; �25�y) as observed at time 100�t obtained using the ADE–PML for
lossless FDTD domain (" = � = 1 and � = 0:0) and different PML
parameters.

Fig. 2. Global error in the computational domain obtained using the
ADE–PML for lossless FDTD domain (" = � = 1 and � = 0:0) and
different PML parameters.

defined in [5], for these numerical tests. The local error was cal-
culated for the PML/computational domain interface along the
line as observed at time . It can be observed
that the presented ADE–PML formulations give good absorbing
performance for all test cases. Also, it can be seen that PML [8,
3, 0.001%] gives the best results in these tests.

The performance of the ADE–PML was also compared with
the CPML formulations for lossless ( , and )
and lossy ( , and ) FDTD domains. The
FDTD domain is terminated by eight layer PML with the param-
eters PML[8, 3, 0.001%]. Figs. 3 and 4 show the local and the
global errors for both cases. Two sets of results are presented:
one for CPML and one for the ADE–PML. It can be observed
from Figs. 3 and 4 that the ADE–PML gives better results com-
pared with the CPML for the given PML parameters.

IV. CONCLUSION

A new algorithm based on the ADE method is presented
for implementing the stretched coordinate PML formulations
without the need of splitting the field components in the time
domain. Simple and material independent PML formulations

Fig. 3. Local error for the PML/computational domain interface along the line
(x; �25�y) as observed at time 100�t for PML[8, 3, 0.001%] obtained using
the CPML and the ADE–PML for lossless (" = � = 1 and � = 0:0) and
lossy (" = � = 1 and � = 0:01) FDTD domains.

Fig. 4. Global error in the computational domain for PML[8, 3, 0.001%]
obtained using the CPML and the ADE–PML for lossless (" = � = 1 and
� = 0:0) and lossy (" = � = 1 and � = 0:01) FDTD domains.

are obtained. Similar to the CPML and for truncating general
media, the presented ADE–PML formulations require two
additional auxiliary variables per field component in the PML
region. Good absorbing performance has been observed for
both lossless and lossy FDTD domains.
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